UNIL088 is a water-soluble prodrug of cyclosporine A (CsA) developed for topical eye delivery. Such a prodrug has to fulfil two paradoxical requirements as it must be rapidly hydrolysed under physiological conditions but also retain a long shelf-life in aqueous media. This study has been conducted to explore the stability of UNIL088 formulated as an eyedrop solution. The stability study of the prodrug was performed over a pH range of 5–7 at 20 °C and at various ionic strengths. The molecule was more stable at pH 5 than at pH 7 with conversion rate constant of 3.2 × 10−3 and 26.0 × 10−3 days−1, respectively. The effect of temperature was studied at four different temperatures and activation energy was determined. Conversion of UNIL088 followed a pseudo-first-order kinetic with an activation energy of 79.4 kJ mol−1. Due to its low solubility, CsA generated precipitated in the solution. The average size of CsA precipitates, determined by photon spectroscopy, was 0.22 and 1.08 μm at 7 and 14 days, respectively. The hydrolysis mechanism was partially elucidated by identification of the intermediate pSer-Sar-CsA.
  • Thermodynamic and Kinetic Stability of Synthetic Multifunctional Rigid-Rod β- Barrel Pores: Evidence for Supramolecular Catalysis
    S. Litvinchuk, G. Bollot, J. Mareda, A. Som, D. Ronan, M.R. Shah, P. Perrottet, N. Sakai and S. Matile
    Journal of the American Chemical Society, 126 (32) (2004), p10067-10075
    DOI:10.1021/ja0481878 | unige:3612 | Abstract | Article HTML | Article PDF

The lessons learned from p-octiphenyl β-barrel pores are applied to the rational design of synthetic multifunctional pore 1 that is unstable but inert, two characteristics proposed to be ideal for practical applications. Nonlinear dependence on monomer concentration provided direct evidence that pore 1 is tetrameric (n = 4.0), unstable, and “invisible,†i.e., incompatible with structural studies by conventional methods. The long lifetime of high-conductance single pores in planar bilayers demonstrated that rigid-rod β-barrel 1 is inert and large (d ≈ 12 Å). Multifunctionality of rigid-rod β-barrel 1 was confirmed by adaptable blockage of pore host 1 with representative guests in planar (8-hydroxy-1,3,6-pyrenetrisulfonate, KD = 190 μM, n = 4.9) and spherical bilayers (poly-l-glutamate, KD ≤ 105 nM, n = 1.0; adenosine triphosphate, KD = 240 μM, n = 2.0) and saturation kinetics for the esterolysis of a representative substrate (8-acetoxy-1,3,6-pyrenetrisulfonate, KM = 0.6 μM). The thermodynamic instability of rigid-rod β-barrel 1 provided unprecedented access to experimental evidence for supramolecular catalysis (n = 3.7). Comparison of the obtained kcat = 0.03 min-1 with the kcat ≈ 0.18 min-1 for stable analogues gave a global KD ≈ 39 μM3 for supramolecular catalyst 1 with a monomer/barrel ratio ≈ 20 under experimental conditions. The demonstrated “invisibility†of supramolecular multifunctionality identified molecular modeling as an attractive method to secure otherwise elusive insights into structure. The first molecular mechanics modeling (MacroModel, MMFF94) of multifunctional rigid-rod β-barrel pore hosts 1 with internal 1,3,6-pyrenetrisulfonate guests is reported.
We report the characterization of multifunctional rigid-rod β-barrel ion channels with either internal aspartates or arginine–histidine dyads by planar bilayer conductance experiments. Barrels with internal aspartates form cation selective, large, unstable and ohmic barrel-stave (rather than toroidal) pores; addition of magnesium cations nearly deletes cation selectivity and increases single-channel stability. Barrels with internal arginine–histidine dyads form cation selective (PK+/PCl–= 2.1), small and ohmic ion channels with superb stability (single-channel lifetime > 20 seconds). Addition of "protons" results in inversion of anion/cation selectivity (PCl–/PK+= 3.8); addition of an anionic guest (HPTS) results in the blockage of anion selective but not cation selective channels. These results suggest that specific, internal counterion immobilization, here magnesium (but not sodium or potassium) cations by internal aspartates and inorganic phosphates by internal arginines (but not histidines), provides access to synthetic multifunctional pores with attractive properties.

Google

 


Redisplay in format 

                 

    in encoding 

  
Format for journal references
Format for book references
Last update Tuesday March 26 2024